Rabu, 23 Maret 2016

Resistor,Induktor dan Kapasitor



Resistor (R)

Sering juga disebut dengan tahanan, hambatan, penghantar, atau resistansi dimana resistor mempunyai fungsi sebagai penghambat arus, pembagi arus , dan pembagi tegangan.
Nilai resistor tergantung dari hambatan jenis bahan resistor itu sendiri (tergantung dari bahan pembuatnya), panjang dari resistor itu sendiri dan luas penampang dari resistor itu sendiri.
Satuan dari resistor : Ohm (Ω)
Jika suatu resistor dilewati oleh sebuah arus maka pada kedua ujung dari resistor tersebut akan menimbulkan beda potensial atau tegangan. Hukum yang didapat dari percobaan ini adalah Hukum Ohm. 
Cara Membaca Nilai Resistor – Resistor merupakan komponen penting dan sering dijumpai dalam sirkuit Elektronik. Boleh dikatakan hampir setiap sirkuit Elektronik pasti ada Resistor. Tetapi banyak diantara kita yang bekerja di perusahaan perakitan Elektronik maupun yang menggunakan peralatan Elektronik tersebut tidak mengetahui cara membaca kode warna ataupun kode angka yang ada ditubuh Resistor itu sendiri.
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
Kita juga bisa mengetahui nilai suatu Resistor dengan cara menggunakan alat pengukur Ohm Meter atau MultiMeter. Satuan nilai Resistor adalah Ohm (Ω).
Cara menghitung nilai Resistor berdasarkan Kode Warna

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :
Penghitungan Resistor dengan 4 gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.
Penghitungan Resistor dengan 5 gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)

Cara menghitung nilai Resistor berdasarkan Kode Angka :
Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)

Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Cara pembacaannya adalah :
Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)

Contoh-contoh perhitungan lainnya :
222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm

Ada juga yang memakai kode angka seperti dibawah ini :
(Tulisan R menandakan letaknya koma decimal)
4R7 = 4,7 Ohm
0R22 = 0,22 Ohm
Keterangan :
Ohm = Ω
Kilo Ohm = KΩ
Mega Ohm = MΩ
1.000 Ohm = 1 kilo Ohm (1 KΩ )
1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)
 cara pengujian kerusakan resistor
Menguji Resistor/Tahanan Tetap Walaupun komponen ini tidak memiliki kutub negatif dan positif tetapi dengan multimeter kita akan menguji kualitasnya. Tidak menutup kemungkinan adanya kerusakan yang disebabkan oleh beberapa faktor, salah satu diantaranya karena terbakar/korsleting karena tidak tahan menahan arus yang lebih besar dari nilainya hambatannya.
Untuk mengujinya dengan multimeter kita boleh membolak-balik kaki resistor ataupun sebaliknya membolak - balik probe merah (+) dan probe hitam (-).
Langkah-langkah pemeriksaan resistor:
a. Memutar saklar multitester sampai pada posisi R x Ohm.
b. Kalibrasi dengan menghubungkan probe merah (+) dan probe hitam (-). Kemudian memutar penyetel sampai jarum menunjuk pada angka nol (0). Atau putar control adjusment untuk menyesuaikan.
c. Setelah itu kita hubungkan probe merah (+) pada salah satu kaki resistor, begitu pula dengan probe hitam (-) pada kaki yang lain.
d. Perhatikan jarum penunjuk. Apakah ia bergerak penuh atau sebaliknya,
jika bergerak dan tak kembali berarti komponen masih baik.
Bila sebaliknya jarum penunjuk skala tidak bergerak berarti Resistor rusak.
e. Komponen resistor yang masih baik juga bisa dinilai dengan sama atau tidak nilai komponen resistor yang tertera pada gelang - gelang warnanya dengan pengukuran menggunakan multimeter
Induktor


Sebuah induktor atau reaktor adalah sebuah komponen elektronika pasif (kebanyakan berbentuk torus) yang dapat menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melintasinya. Kemampuan induktor untuk menyimpan energi magnet ditentukan oleh induktansinya, dalam satuan Henry. Biasanya sebuah induktor adalah sebuah kawat penghantar yang dibentuk menjadi kumparan, lilitan membantu membuat medan magnet yang kuat di dalam kumparan dikarenakan hukum induksi Faraday. Induktor adalah salah satu komponen elektronik dasar yang digunakan dalam rangkaian yang arus dan tegangannya berubah-ubah dikarenakan kemampuan induktor untuk memproses arus bolak-balik.
Sebuah induktor ideal memiliki induktansi, tetapi tanpa resistansi atau kapasitansi, dan tidak memboroskan daya. Sebuah induktor pada kenyataanya merupakan gabungan dari induktansi, beberapa resistansi karena resistivitas kawat, dan beberapa kapasitansi. Pada suatu frekuensi, induktor dapat menjadi sirkuit resonansi karena kapasitas parasitnya. Selain memboroskan daya pada resistansi kawat, induktor berinti magnet juga memboroskan daya di dalam inti karena efek histeresis, dan pada arus tinggi mungkin mengalami nonlinearitas karena penjenuhan.
Sebuah induktor ideal tidak menimbulkan kerugian terhadap arus yang melewati lilitan. Tetapi, induktor pada umumnya memiliki resistansi lilitan dari kawat yang digunakan untuk lilitan. Karena resistansi lilitan terlihat berderet dengan induktor, ini sering disebut resistansi deret. Resistansi deret induktor mengubah arus listrik menjad bahang, yang menyebabkan pengurangan kualitas induktif. Faktor kualitas atau "Q" dari sebuah induktor adalah perbandingan reaktansi induktif dan resistansi deret pada frekuensi tertentu, dan ini merupakan efisiensi induktor. Semakin tinggi faktor Q dari induktor, induktor tersebut semakin mendekati induktor ideal tanpa kerugian.
Faktor Q dari sebuah induktor dapat diketahui dari rumus berikut, dimana R merupakan resistansi internal dan  adalah resistansi kapasitif atau induktif pada resonansi:
Dengan menggunakan inti feromagnetik, induktansi dapat ditingkatkan untuk jumlah tembaga yang sama, sehingga meningkatkan faktor Q. Inti juga memberikan kerugian pada frekuensi tinggi. Bahan inti khusus dipilih untuk hasil terbaik untuk jalur frekuensi tersebut. Pada VHF atau frekuensi yang lebih tinggi, inti udara sebaiknya digunakan.
Lilitan induktor pada inti feromagnetik mungkin jenuh pada arus tinggi, menyebabkan pengurangan induktansi dan faktor Q yang sangat signifikan. Hal ini dapat dihindari dengan menggunakan induktor inti udara. Sebuah induktor inti udara yang didesain dengan baik dapat memiliki faktor Q hingga beberapa ratus.
Sebuah kondensator nyaris ideal (faktor Q mendekati tak terhingga) dapat dibuat dengan membuat lilitan dari kawat superkonduktor pada helium atau nitrogen cair. Ini membuat resistansi kawat menjadi nol. Karena induktor superkonduktor hampir tanpa kerugian, ini dapat menyimpan sejumlah besar energi listrik dalam lilitannya.

Pengujian Komponen Induktor
Berikut ini langkah-langkah pengujian komponen Induktor.
I. Dasar
Tiga langkah dasar bila mengukur dengan posisi OHM pada multimeter:
1. Putar dan letakan Jangka Pemilih (selektor) pada posisi OHM.
2. Pilih salah satu batas ukur ( range ) yaitu x1, x10, 100, x1k, x10k atau x100k.
3. Nol secara tepat skala ukur sebelah kanan dengan pengatur nol sebelah kanan ( adjust zero ) hanya untuk multimeter Analog.

II. Pengujian komponen induktor

Dengan alat ukur Ohm meter kita dapat menguji induktor,apakah induktor ini:
a.Bagus dimana nilai perlawanan kecil atau besar.
b.Putus dimana nilai perlawanan tak terhingga.

Dalam rumah multimeter ( alat-ukur Ohm ) terdapat baterai sebagai sumber-arus alat ukur,maka:
a.Kutub positif baterai berkoneksi dengan lubang negatif alat-ukur ohm.
b.Kutub negatif baterai berkoneksi dengan lubang positif alat–ukur ohm.

III. Menguji induktor
Pada multimeter perlu diingat yaitu pada posisi ohmmeter dimana:
•Kabel hitam ( - ) ialah positif baterai ohmmeter.
•Kabel merah ( + ) ialah negatif baterai ohmmeter.

Dengan alat-ukur ohm atau multimeter kita akan mengukur nilai perlawanan induktor.
A. Sesama gulungan:
•Apa bila jarum bergerak maka induktor bagus.
•Apa bila jarum tidak bergerak maka induktor putus.

B. Antar gulungan
•Apa bila jarum tidak bergerak maka induktor bagus.
•Apa bila jarum bergerak maka induktor putus.
•Bila jarum tidak bergerak jauh berarti induktor kemungkinan induktor bocor untuk lebih akurat pengujian Bocor atau hubung singkat antar kawat emailnya atau antar gulungan hanya dapat dilihat dengan osiloskop dengan bantuan menginjeksikan isyarat bentuk blok.

Kapasitor
 

Pengertian Kapasitor
Pengertian Kapasitor adalah perangkat komponen elektronika yang berfungsi untuk menyimpan muatan listrik dan terdiri dari dua konduktor yang dipisahkan oleh bahan penyekat (dielektrik) pada tiap konduktor atau yang disebut keping. Kapasitor biasanya disebut dengan sebutan kondensator yang merupakan komponen listrik dibuat sedemikian rupa sehingga mampu menyimpan muatan listrik.
Prinsip kerja kapasitor pada umunya hampir sama dengan resistor yang juga termasuk ke dalam komponen pasif. Komponen pasif adalah jenis komponen yang bekerja tanpa memerlukan arus panjar. Kapasitor sendiri terdiri dari dua lempeng logam (konduktor) yang dipisahkan oleh bahan penyekat (isolator). Penyekat atau isolator banyak disebut sebagai bahan zat dielektrik.

Zat dielektrik yang digunakan untuk menyekat kedua komponen tersebut berguna untuk membedakan jenis-jenis kapasitor. Di dunia ini terdapat beberapa kapasitor yang menggunakan bahan dielektrik, antara lain kertas, mika, plastik cairan dan masih banyak lagi bahan dielektrik lainnya. Dalam rangkaian elektronika, kapasitor sangat diperlukan terutama untuk mencegah loncatan bunga api listrik pada rangkaian yang mengandung kumparan. Selain itu, kapasitor juga dapat menyimpan muatan atau energi listrik dalam rangkaian, dapat memilih panjang gelombang pada radio penerima dan sebagai filter dalam catu daya (Power Supply).
Fungsi kapasitor dalam rangkaian elektronik sebagai penyimpan arus atau tegangan listrik. Untuk arus DC, kapasitor dapat berfungsi sebagai isulator (penahan arus listrik), sedangkan untuk arus AC, kapasitor berfungsi sebagai konduktor (melewatkan arus listrik). Dalam penerapannya, kapasitor banyak di manfaatkan sebagai filter atau penyaring, perata tegangan yang digunakan untuk mengubah AC ke DC, pembangkit gelombang AC (Isolator) dan masih banyak lagi penerapan lainnya.
Jenis-Jenis Kapasitor terbagi menjadi bermacam-macam. Karena dibedakan berdasarkan polaritasnya, bahan pembuatan dan ketetapan nilai kapasitor. Selain memiliki jenis yang banyak, bentuk dari kapasitor juga bervariasi. Contohnya kapasitor kertas yang besar kapasitasnya 0.1 F, kapasitor elektrolit yang besar kapasitasnya 105 pF dan kapasitor variable yang besar kapasitasnya bisa kita rubah hingga maksimum 500 pF.
Mengukur kapasitor menggunakan multimeter analog melalui fungsi ohm meter. Dengan memahami prinsip kerja kapasitor sebagai penyimpan muatan listrik sementara maka kita dapat mengetest kondisi kapasitor menggunakan multimeter. Kapasitor adalah komponen elektronik yang dirancang untuk dapat menyimpan dan membuang tegangan arus listrik searah (Direct Current Voltage/DCV). Kapasitor terbagi dalam dua jenis. Pertama, kapasitor yang memiliki kutub positip (+) dan negatip (-). Dalam teknik elektronika disebut kapasitor polar (polarised capacitor). Kedua, kapasitor yang tidak memiliki kutub positip (+) dan negatip (-). Disebut kapasitor non polar (unpolarised capacitor).
Cara Mengukur Kapasitor Menggunakan Multimeter
Hal penting yang perlu diperhatikan dalam mengukur kapasitor polar adalah ;
  1. Kabel penyidik (probes) positip (+) yang berwarna merah diletakkan pada kaki kapasitor yang bertanda positip (+).
  2. Kabel penyidik (probes) negatip (-) yang berwarna hitam diletakkan pada kaki kapasitor yang bertanda negatip (-).
  3. Saklar jangkauan ukur pada posisi Ω, batas ukur (range) berada pada posisi x1, x10 atau kΩ, sesuai kebutuhan.
  4. Untuk kapasitor non polar (unpolarised) kedua kabel penyidik (probes) dapat diletakkan secara sembarang (acak) ke kaki kapasitor.
Untuk lebih jelasnya dapat dilihat skema pengukuran kapasitor pada gambar berikut.
Skema Mengukur Kapasitor Polar Dan Non-Polar Menggunakan Multimeter
Langkah-Langkah Mengukur Kapasitor Menggunakan Multimeter
  1. Masukkan kabel penyidik (probes) warna merah ke lubang kabel penyidik yang bertanda positip (+), kabel penyidik (probes) warna hitam ke lubang kabel penyidik yang bertanda negatip (-).
  2. Jika diperlukan, menggunakan sekrup pengatur posisi jarum (preset), atur posisi jarum pada papan skala sehingga berada pada posisi angka nol.
  3. Atur saklar jangkauan ukur pada posisi Ω.
  4. Batas ukur (range) pada posisi x1, x10 atau kΩ sesuai kebutuhan.
  5. Ujung dari kedua kabel penyidik (probes) dipertemukan.
  6. Menggunakan tombol pengatur posisi jarum pada angka nol (zero adjustment), atur posisi jarum pada papan skala hingga menunjukkan angka nol.
  7. Mengacu pada gambar diatas, letakkan kabel penyidik (probes) warna merah (+) pada kaki positip (+) kapasitor non polar (kaki positip biasanya berukuran lebih panjang ketimbang kaki negatip), kabel penyidik (probes) warna hitam (-) ke kaki negatip.
  8. Jarum pada papan skala bergerak jauh ke kanan untuk kemudian kembali ke kiri, artinya : kapasitor polar masih baik dan dapat digunakan. (Jika jarum pada papan skala bergerak ke kanan dan tidak kembali lagi ke kiri, artinya : kapasitor polar sudah rusak dan tidak dapat digunakan).
  9. Letakkan ujung kabel penyidik (probes) warna merah (+) dan kabel penyidik (probes) warna hitam (-) secara sembarang (acak) ke kaki kapasitor non polar.
  10. Jarum pada papan skala tidak bergerak (atau bergerak sedikit), artinya : kapasitor non polar masih baik dan dapat digunakan. (Jika jarum pada papan skala bergerak jauh ke kanan, artinya : kapasitor non polar sudah rusak dan tidak dapat digunakan).
Dengan memahami prinsip kerja kapasitor sebagai penyimpan muatan listrik sementara maka kita dapat menentukan kondisi kapasitor menggunakan multimeter. Pada kapasitor dengan kapasitas kecil maka simpangan jarum multimeter akan lebih cepat dan sedikit, dan pada kasitor dengan kapasitor berkapasitas besar maka proses kembalinya jarum multimeter akan lebih lambat pada saat mengukur kapasitor menggunakan multimeter.


 


0 komentar:

Posting Komentar

http://www.resepkuekeringku.com/2014/11/resep-donat-empuk-ala-dunkin-donut.html http://www.resepkuekeringku.com/2015/03/resep-kue-cubit-coklat-enak-dan-sederhana.html http://www.resepkuekeringku.com/2014/10/resep-donat-kentang-empuk-lembut-dan-enak.html http://www.resepkuekeringku.com/2014/07/resep-es-krim-goreng-coklat-kriuk-mudah-dan-sederhana-dengan-saus-strawberry.html http://www.resepkuekeringku.com/2014/06/resep-kue-es-krim-goreng-enak-dan-mudah.html http://www.resepkuekeringku.com/2014/09/resep-bolu-karamel-panggang-sarang-semut-lembut.html